000 05893cam a2200685Mi 4500
001 ocn887507297
003 OCoLC
005 20171224114715.0
006 m o d
007 cr cnu---unuuu
008 140816s2014 xx o 000 0 eng d
040 _aEBLCP
_beng
_epn
_cEBLCP
_dMHW
_dDG1
_dN$T
_dOCLCQ
_dVRC
_dCHVBK
_dOCLCF
_dDEBSZ
_dDEBBG
_dOCLCQ
020 _a9781119005216
_q(electronic bk.)
020 _a1119005213
_q(electronic bk.)
020 _a9781119015185
_q(electronic bk.)
020 _a1119015189
_q(electronic bk.)
029 1 _aCHBIS
_b010259771
029 1 _aCHDSB
_b006318344
029 1 _aCHVBK
_b325941009
029 1 _aCHVBK
_b326773215
029 1 _aDEBBG
_bBV043397063
029 1 _aDEBSZ
_b431746133
035 _a(OCoLC)887507297
050 4 _aQA402.5
_b.C545123 2014
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
082 0 4 _a519.64
_223
049 _aMAIN
245 0 0 _aConcepts of combinatorial optimization /
_cedited by Vangelis Th. Paschos.
250 _a2nd ed.
260 _aHoboken :
_bWiley,
_c2014.
300 _a1 online resource (409 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aISTE
588 0 _aPrint version record.
505 0 _aCover; Title Page; Copyright; Contents; Preface; PART I: Complexity of CombinatorialOptimization Problems; Chapter 1: Basic Concepts in Algorithmsand Complexity Theory; 1.1. Algorithmic complexity; 1.2. Problem complexity; 1.3. The classes P, NP and NPO; 1.4. Karp and Turing reductions; 1.5. NP-completeness; 1.6. Two examples of NP-complete problems; 1.6.1. MIN VERTEX COVER; 1.6.2. MAX STABLE; 1.7. A few words on strong and weak NP-completeness; 1.8. A few other well-known complexity classes; 1.9. Bibliography; Chapter 2: Randomized Complexity; 2.1. Deterministic and probabilistic algorithms.
505 8 _a2.1.1. Complexity of a Las Vegas algorithm2.1.2. Probabilistic complexity of a problem; 2.2. Lower bound technique; 2.2.1. Definitions and notations; 2.2.2. Minimax theorem; 2.2.3. The Loomis lemma and the Yao principle; 2.3. Elementary intersection problem; 2.3.1. Upper bound; 2.3.2. Lower bound; 2.3.3. Probabilistic complexity; 2.4. Conclusion; 2.5. Bibliography; PART II: Classical Solution Methods; Chapter 3: Branch-and-Bound Methods; 3.1. Introduction; 3.2. Branch-and-bound method principles; 3.2.1. Principle of separation; 3.2.2. Pruning principles; 3.2.2.1. Bound.
505 8 _a3.2.2.2. Evaluation function3.2.2.3. Use of the bound and of the evaluation function for pruning; 3.2.2.4. Other pruning principles; 3.2.2.5. Pruning order; 3.2.3. Developing the tree; 3.2.3.1. Description of development strategies; 3.2.3.2. Compared properties of the depth first and best first strategies; 3.3. A detailed example: the binary knapsack problem; 3.3.1. Calculating the initial bound; 3.3.2. First principle of separation; 3.3.3. Pruning without evaluation; 3.3.4. Evaluation; 3.3.5. Complete execution of the branch-and-bound method for finding only oneoptimal solution.
505 8 _a3.3.6. First variant: finding all the optimal solutions3.3.7. Second variant: best first search strategy; 3.3.8. Third variant: second principle of separation; 3.4. Conclusion; 3.5. Bibliography; Chapter 4: Dynamic Programming; 4.1. Introduction; 4.2. A first example: crossing the bridge; 4.3. Formalization; 4.3.1. State space, decision set, transition function; 4.3.2. Feasible policies, comparison relationships and objectives; 4.4. Some other examples; 4.4.1. Stock management; 4.4.2. Shortest path bottleneck in a graph; 4.4.3. Knapsack problem; 4.5. Solution; 4.5.1. Forward procedure.
505 8 _a4.5.2. Backward procedure4.5.3. Principles of optimality and monotonicity; 4.6. Solution of the examples; 4.6.1. Stock management; 4.6.2. Shortest path bottleneck; 4.6.3. Knapsack; 4.7. A few extensions; 4.7.1. Partial order and multicriteria optimization; 4.7.1.1. New formulation of the problem; 4.7.1.2. Solution; 4.7.1.3. Examples; 4.7.2. Dynamic programming with variables; 4.7.2.1. Sequential decision problems under uncertainty; 4.7.2.2. Solution; 4.7.2.3. Example; 4.7.3. Generalized dynamic programming; 4.8. Conclusion; 4.9. Bibliography; PART III: Elements from MathematicalProgramming.
500 _aChapter 5: Mixed Integer Linear Programming Models forCombinatorial Optimization Problems.
520 _aCombinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts:- On the complexity of combinatorial optimization problems, presenting basics abo.
650 0 _aCombinatorial optimization.
650 0 _aProgramming (Mathematics)
650 7 _aMATHEMATICS
_xApplied.
_2bisacsh
650 7 _aMATHEMATICS
_xProbability & Statistics
_xGeneral.
_2bisacsh
650 7 _aCombinatorial optimization.
_2fast
_0(OCoLC)fst00868980
650 7 _aProgramming (Mathematics)
_2fast
_0(OCoLC)fst01078701
650 7 _aKombinatorische Optimierung.
_0(DE-588)4031826-6
_2gnd
655 4 _aElectronic books.
700 1 _aPaschos, Vangelis Th.
776 0 8 _iPrint version:
_aPaschos, Vangelis Th.
_tConcepts of Combinatorial Optimization.
_dHoboken : Wiley, ©2014
_z9781848216563
830 0 _aISTE.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781119005216
_zWiley Online Library
938 _aEBL - Ebook Library
_bEBLB
_nEBL1765108
938 _aEBSCOhost
_bEBSC
_n829093
994 _a92
_bDG1
999 _c13644
_d13644