000 06667cam a2200925Ka 4500
001 ocn827948760
003 OCoLC
005 20171224114202.0
006 m o d
007 cr cnu---unuuu
008 130218s2012 enka ob 001 0 eng d
040 _aN$T
_beng
_epn
_cN$T
_dDG1
_dYDXCP
_dIDEBK
_dE7B
_dOCLCF
_dEBLCP
_dMHW
_dDEBSZ
_dLVT
_dOCLCQ
_dCOO
_dOCLCQ
_dLOA
_dDG1
_dOCLCQ
_dOCLCO
_dOCLCA
019 _a827207541
_a960203197
_a961516216
_a962683729
020 _a9781118603024
_q(electronic bk.)
020 _a1118603028
_q(electronic bk.)
020 _a9781118603178
_q(electronic bk.)
020 _a1118603176
_q(electronic bk.)
020 _a9781118603161
020 _a1118603168
020 _z9781848213289
020 _z184821328X
029 1 _aAU@
_b000050718710
029 1 _aDEBBG
_bBV041560750
029 1 _aDEBBG
_bBV041829200
029 1 _aDEBBG
_bBV041907971
029 1 _aDEBSZ
_b431332630
029 1 _aDKDLA
_b820120-katalog:000732705
029 1 _aNZ1
_b15915294
035 _a(OCoLC)827948760
_z(OCoLC)827207541
_z(OCoLC)960203197
_z(OCoLC)961516216
_z(OCoLC)962683729
050 4 _aG70.23
_b.D37 2012eb
072 7 _aSCI
_x030000
_2bisacsh
072 7 _aTRV
_x033000
_2bisacsh
072 7 _aTRV
_x034000
_2bisacsh
072 7 _aTRV
_x016000
_2bisacsh
072 7 _aTRV
_x018000
_2bisacsh
082 0 4 _a910.01/514742
_223
084 _aRB 10103
_2rvk
049 _aMAIN
100 1 _aDauphiné, André.
245 1 0 _aFractal geography /
_cAndré Dauphiné.
260 _aLondon :
_bISTE ;
_aHoboken, NJ :
_bWiley,
_c©2012.
300 _a1 online resource (xvii, 241 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aISTE
504 _aIncludes bibliographical references (pages 221]-238) and index.
588 0 _aPrint version record.
505 0 _aCover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. A Fractal World; 1.1. Fractals pervade into geography; 1.1.1. From geosciences to physical geography; 1.1.2. Urban geography: a big beneficiary; 1.2. Forms of fractal processes; 1.2.1. Some fractal forms that make use of the principle of allometry; 1.2.2. Time series and processes are also fractal; 1.2.3. Rank-size rules are generally fractal structures; 1.3. First reflections on the link between power laws and fractals; 1.3.1. Brief introduction into power laws.
505 8 _a1.3.2. Some power laws recognized before the fractal era1.4. Conclusion; Chapter 2. Auto-similar and Self-affine Fractals; 2.1. The rarity of auto-similar terrestrial forms; 2.2. Yet more classes of self-affine fractal forms and processes; 2.2.1. Brownian, fractional Brownian and multi-fractional Brownian motion; 2.2.2. Lévy models; 2.2.3. Four examples of generalizations for simulating realistic forms; 2.3. Conclusion; Chapter 3. From the Fractal Dimension to Multifractal Spectrums; 3.1. Two extensions of the fractal dimension: lacunarity and codimension.
505 8 _a3.1.1. Some territorial textures differentiated by their lacunarity3.1.2. Codimension as a relative fractal dimension; 3.2. Some corrections to the power laws: semifractals, parabolicfractals and log-periodic distributions; 3.2.1. Semifractals and double or truncated Pareto distributions; 3.2.2. The parabolic fractal model; 3.2.3. Log-periodic distributions; 3.3. A routine technique in medical imaging: fractal scanning; 3.4. Multifractals used to describe all the irregularities of a setdefined by measurement; 3.4.1. Definition and characteristics of a multifractal.
505 8 _a3.4.2. Two functions to interpret: generalized dimension spectrumand singularity spectrum3.4.3. An approach that is classical in geosciences but exceptional in social sciences; 3.4.4. Three potential generalizations; 3.5. Conclusion; Chapter 4. Calculation and Interpretation of Fractal Dimensions; 4.1. Test data representing three categories of fractals: black and white maps, grayscale Landsat images and pluviometric chronicle series; 4.2. A first incontrovertible stage: determination of the fractal classof the geographical phenomenon studied.
505 8 _a4.2.1. Successive tests using Fourier or wavelet decompositions4.2.2. Decadal rainfall in Barcelona and Beirut are fractionalGaussian noise; 4.3. Some algorithms for the calculation of the fractal dimensionsof auto-similar objects; 4.3.1. Box counting, information and area measurementdimensions for auto-similar objects; 4.3.2. A geographically inconclusive application from perception; 4.4. The fractal dimensions of objects and self-affine processes; 4.4.1. A multitude of algorithms; 4.4.2. High irregularity of decadal rainfall for Barcelona and Beirut; 4.5. Conclusion.
520 _aOur daily universe is rough and infinitely diverse. The fractal approach clarifies and orders these disparities. It helps us to envisage new explanations of geographical phenomena, which are, however, considered as definitely understood. Written for use by geographers and researchers from similar disciplines, such as ecologists, economists, historians and sociologists, this book presents the algorithms best adapted to the phenomena encountered, and proposes case studies illustrating their applications in concrete situations. An appendix is also provided that develops programs writ.
650 0 _aGeography
_xMathematics.
650 0 _aFractals.
650 4 _aFractals.
650 4 _aGeography
_xMathematics.
650 7 _aSCIENCE
_xEarth Sciences
_xGeography.
_2bisacsh
650 7 _aTRAVEL
_xBudget.
_2bisacsh
650 7 _aTRAVEL
_xHikes & Walks.
_2bisacsh
650 7 _aTRAVEL
_xMuseums, Tours, Points of Interest.
_2bisacsh
650 7 _aTRAVEL
_xParks & Campgrounds.
_2bisacsh
650 7 _aFractals.
_2fast
_0(OCoLC)fst00933507
650 7 _aGeography
_xMathematics.
_2fast
_0(OCoLC)fst00940499
650 7 _aFraktal
_2gnd
650 7 _aGeografie
_2gnd
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aDauphiné, André.
_tFractal geography.
_dLondon : ISTE ; Hoboken, NJ : Wiley, ©2012
_z9781848213289
_w(DLC) 2011040744
_w(OCoLC)757838233
830 0 _aISTE.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118603178
_zWiley Online Library
938 _aEBL - Ebook Library
_bEBLB
_nEBL1120767
938 _aebrary
_bEBRY
_nebr10657659
938 _aEBSCOhost
_bEBSC
_n531527
938 _aIngram Digital eBook Collection
_bIDEB
_ncis24807253
938 _aYBP Library Services
_bYANK
_n10001757
938 _aYBP Library Services
_bYANK
_n10195987
938 _aYBP Library Services
_bYANK
_n9985049
994 _a92
_bDG1
999 _c12468
_d12468