000 | 09158cam a2200889 a 4500 | ||
---|---|---|---|
001 | ocn794922820 | ||
003 | OCoLC | ||
005 | 20171224113957.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120605s2012 enk sb 001 0 eng | ||
010 | _a 2012023036 | ||
040 |
_aDLC _beng _cDLC _dYDX _dCOO _dN$T _dDG1 _dYDXCP _dUKMGB _dE7B _dUMI _dUBY _dTEFOD _dDEBSZ _dOCLCF _dLRU _dCNSPO _dDKDLA _dDEBBG _dAZK _dOCLCQ _dRECBK _dLOA |
||
016 | 7 |
_a013735766 _2Uk |
|
019 |
_a811407600 _a840106463 _a872693662 _a961624272 _a962694403 _a966221768 |
||
020 | _a9780470517246 (Adobe PDF) | ||
020 | _a0470517247 (Adobe PDF) | ||
020 | _a9781118381267 (Adobe PDF) | ||
020 | _a1118381262 (Adobe PDF) | ||
020 | _a9781118381274 ( MobiPocket) | ||
020 | _a1118381270 ( MobiPocket) | ||
020 | _z9781119978299 (hardback) | ||
020 | _a9780470517253 | ||
020 | _a0470517255 | ||
020 | _z9780470028193 | ||
020 | _z047002819X | ||
024 | 8 | _a9786613862228 | |
029 | 1 |
_aAU@ _b000049296052 |
|
029 | 1 |
_aAU@ _b000051432786 |
|
029 | 1 |
_aCHNEW _b000620688 |
|
029 | 1 |
_aDEBBG _bBV041121546 |
|
029 | 1 |
_aDEBSZ _b396764614 |
|
029 | 1 |
_aNZ1 _b14695735 |
|
029 | 1 |
_aNZ1 _b15340856 |
|
029 | 1 |
_aDEBBG _bBV043394589 |
|
035 |
_a(OCoLC)794922820 _z(OCoLC)811407600 _z(OCoLC)840106463 _z(OCoLC)872693662 _z(OCoLC)961624272 _z(OCoLC)962694403 _z(OCoLC)966221768 |
||
037 |
_aCL0500000211 _bSafari Books Online |
||
037 |
_a00205A11-1900-41C3-B18E-879B09A6702A _bOverDrive, Inc. _nhttp://www.overdrive.com |
||
042 | _apcc | ||
050 | 0 | 0 | _aQA278 |
072 | 7 |
_aMAT _x029020 _2bisacsh |
|
082 | 0 | 0 |
_a519.5/35 _223 |
084 |
_aMAT029020 _2bisacsh |
||
049 | _aMAIN | ||
100 | 1 |
_aKrüger, Uwe, _cDr. |
|
245 | 1 | 0 |
_aStatistical monitoring of complex multivariate processes : _bwith applications in industrial process control / _cUwe Kruger and Lei Xie. |
260 |
_aChichester, West Sussex ; _aHoboken, N.J. : _bWiley, _c2012. |
||
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_adata file _2rda |
||
380 | _aBibliography | ||
490 | 1 | _aStatistics in practice | |
520 |
_a"The book summarises recent advances in statistical-based process monitoring of complex multivariate process systems"-- _cProvided by publisher. |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 8 | _aMachine generated contents note: Preface Introduction I Fundamentals of Multivariate Statistical Process Control 1 Motivation for Multivariate Statistical Process Control 1.1 Summary of Statistical Process Control 1.1.1 Roots and Evolution of Statistical Process Control 1.1.2 Principles of Statistical Process Control 1.1.3 Hypothesis Testing, Type I and II errors 1.2 Why Multivariate Statistical Process Control 1.2.1 Statistically Uncorrelated Variables 1.2.2 Perfectly Correlated Variables 1.2.3 Highly Correlated Variables 1.2.4 Type I and II Errors and Dimension Reduction 1.3 Tutorial Session 2 Multivariate Data Modeling Methods 2.1 Principal Component Analysis 2.1.1 Assumptions for Underlying Data Structure 2.1.2 Geometric Analysis of Data Structure 2.1.3 A Simulation Example 2.2 Partial Least Squares 2.2.1 Assumptions for Underlying Data Structure 2.2.2 Deflation Procedure for Estimating Data Models 2.2.3 A Simulation Example 2.3 Maximum Redundancy Partial Least Squares 2.3.1 Assumptions for Underlying Data Structure 2.3.2 Source Signal Estimation 2.3.3 Geometric Analysis of Data Structure 2.3.4 A Simulation Example 2.4 Estimating the Number of Source Signals 2.4.1 Stopping Rules for PCA Models 2.4.2 Stopping Rules for PLS Models 2.5 Tutorial Session 3 Process Monitoring Charts 3.1 Fault Detection 3.1.1 Scatter Diagrams 3.1.2 Nonnegative Quadratic Monitoring Statistics 3.2 Fault Isolation and Identification 3.2.1 Contribution Charts 3.2.2 Residual-Based Tests 3.2.3 Variable Reconstruction 3.3 Geometry of Variable Projections 3.3.1 Linear Dependency of Projection Residuals 3.3.2 Geometric Analysis of Variable Reconstruction 3.4 Tutorial Session II Application Studies 4 Application to a Chemical Reaction Process 4.1 Process Description 4.2 Identification of a Monitoring Model 4.3 Diagnosis of a Fault Condition 5 Application to a Distillation Process 5.1 Process Description 5.2 Identification of a Monitoring Model 5.3 Diagnosis of a Fault Condition III Advances in Multivariate Statistical Process Control 6 Further Modeling Issues 6.1 Accuracy of Estimating PCA Models 6.1.1 Revisiting the Eigendecomposition of Sz0z0 6.1.2 Two Illustrative Examples 6.1.3 Maximum Likelihood PCA for Known Sgg 6.1.4 Maximum Likelihood PCA for Unknown Sgg 6.1.5 A Simulation Example 6.1.6 A Stopping Rule for Maximum Likelihood PCA Models 6.1.7 Properties of Model and Residual Subspace Estimates 6.1.8 Application to a Chemical Reaction Process -- Revisited 6.2 Accuracy of Estimating PLS Models 6.2.1 Bias and Variance of Parameter Estimation 6.2.2 Comparing Accuracy of PLS and OLS Regression Models 6.2.3 Impact of Error-in-Variables Structure upon PLS Models 6.2.4 Error-in-Variable Estimate for Known See 6.2.5 Error-in-Variable Estimate for Unknown See 6.2.6 Application to a Distillation Process -- Revisited 6.3 Robust Model Estimation 6.3.1 Robust Parameter Estimation 6.3.2 Trimming Approaches 6.4 Small Sample Sets 6.5 Tutorial Session 7 Monitoring Multivariate Time-Varying Processes 7.1 Problem Analysis 7.2 Recursive Principal Component Analysis 7.3 MovingWindow Principal Component Analysis 7.3.1 Adapting the Data Correlation Matrix 7.3.2 Adapting the Eigendecomposition 7.3.3 Computational Analysis of the Adaptation Procedure 7.3.4 Adaptation of Control Limits 7.3.5 Process Monitoring using an Application Delay 7.3.6 MinimumWindow Length 7.4 A Simulation Example 7.4.1 Data Generation 7.4.2 Application of PCA 7.4.3 Utilizing MWPCA based on an Application Delay 7.5 Application to a Fluid Catalytic Cracking Unit 7.5.1 Process Description 7.5.2 Data Generation 7.5.3 Pre-analysis of Simulated Data 7.5.4 Application of PCA 7.5.5 Application of MWPCA 7.6 Application to a Furnace Process 7.6.1 Process Description 7.6.2 Description of Sensor Bias 7.6.3 Application of PCA 7.6.4 Utilizing MWPCA based on an Application Delay 7.7 Adaptive Partial Least Squares 7.7.1 Recursive Adaptation of Sx0x0 and Sx0y0 7.7.2 MovingWindow Adaptation of Sv0v0 and Sv0y0 7.7.3 Adapting The Number of Source Signals 7.7.4 Adaptation of the PLS Model 7.8 Tutorial Session 8 Monitoring Changes in Covariance Structure 8.1 Problem Analysis 8.1.1 First Intuitive Example 8.1.2 Generic Statistical Analysis 8.1.3 Second Intuitive Example 8.2 Preliminary Discussion of Related Techniques 8.3 Definition of Primary and Improved Residuals 8.3.1 Primary Residuals for Eigenvectors 8.3.2 Primary Residuals for Eigenvalues 8.3.3 Comparing both Types of Primary Residuals 8.3.4 Statistical Properties of Primary Residuals 8.3.5 Improved Residuals for Eigenvalues 8.4 Revisiting the Simulation Examples in Section 8.1 8.4.1 First Simulation Example 8.4.2 Second Simulation Example 8.5 Fault Isolation and Identification 8.5.1 Diagnosis of Step-Type Fault Conditions 8.5.2 Diagnosis of General Deterministic Fault Conditions 8.5.3 A Simulation Example 8.6 Application Study to a Gearbox System 8.6.1 Process Description 8.6.2 Fault Description 8.6.3 Identification of a Monitoring Model 8.6.4 Detecting a Fault Condition 8.7 Analysis of Primary and Improved Residuals 8.7.1 Central Limit Theorem 8.7.2 Further Statistical Properties of Primary Residuals 8.7.3 Sensitivity of Statistics based on Improved Residuals 8.8 Tutorial Session IV Description of Modeling Methods 9 Principal Component Analysis 9.1 The Core Algorithm 9.2 Summary of the PCA Algorithm 9.3 Properties of a PCA Model 10 Partial Least Squares 10.1 Preliminaries 10.2 The Core Algorithm 10.3 Summary of the PLS Algorithm10.4 Properties of PLS 10.5 Properties of Maximum Redundancy PLS References Index . | |
588 | _aDescription based on print version record and CIP data provided by publisher. | ||
650 | 0 | _aMultivariate analysis. | |
650 | 7 |
_aMATHEMATICS / Probability & Statistics / Multivariate Analysis. _2bisacsh |
|
650 | 4 | _aMultivariate analysis. | |
650 | 7 |
_aMultivariate analysis. _2fast _0(OCoLC)fst01029105 |
|
650 | 7 |
_aMultivariate analysis. _2local |
|
655 | 4 | _aElectronic books. | |
655 | 7 |
_aElectronic books. _2local |
|
700 | 1 | _aXie, Lei. | |
776 | 0 | 8 |
_iPrint version: _aKrüger, Uwe, Dr. _tAdvances in statistical monitoring of complex multivariate processes _dChichester, West Sussex ; Hoboken, N.J. : Wiley, 2012 _z9781119978299 (hardback) _w(DLC) 2012016445 |
830 | 0 | _aStatistics in practice. | |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9780470517253 _zWiley Online Library |
938 |
_aRecorded Books, LLC _bRECE _nrbeEB00621687 |
||
938 |
_aebrary _bEBRY _nebr10593226 |
||
938 |
_aEBSCOhost _bEBSC _n475808 |
||
938 |
_aYBP Library Services _bYANK _n9661793 |
||
938 |
_aYBP Library Services _bYANK _n11140802 |
||
938 |
_aYBP Library Services _bYANK _n9564708 |
||
994 |
_a92 _bDG1 |
||
999 |
_c11965 _d11965 |