000 06381cam a2200685 i 4500
001 ocn775099472
003 OCoLC
005 20171224113825.0
006 m o d
007 cr |||||||||||
008 120202s2012 nju ob 001 0 eng
010 _a 2012004782
040 _aDLC
_beng
_erda
_epn
_cDLC
_dN$T
_dDG1
_dCUS
_dOCLCF
_dMERUC
_dOCLCQ
_dDEBBG
019 _a793103956
_a794822653
020 _a9780470975923
_q(Adobe PDF)
020 _a047097592X
_q(Adobe PDF)
020 _a9781118304037
_q(ePub)
020 _a1118304039
_q(ePub)
020 _a9781118304204
_q(MobiPocket)
020 _a1118304209
_q(MobiPocket)
020 _a9780470975916
_q(electronic bk.)
020 _a0470975911
_q(electronic bk.)
020 _z9780470744536
_q(hardback)
029 1 _aAU@
_b000048545199
029 1 _aNZ1
_b15351430
029 1 _aDEBBG
_bBV043394076
035 _a(OCoLC)775099472
_z(OCoLC)793103956
_z(OCoLC)794822653
037 _a10.1002/9780470975916
_bWiley InterScience
_nhttp://www3.interscience.wiley.com
042 _apcc
050 0 0 _aQA279.5
072 7 _aMAT
_x029010
_2bisacsh
082 0 0 _a519.5/42
_223
084 _aMAT029010
_2bisacsh
049 _aMAIN
100 1 _aRuggeri, Fabrizio.
245 1 0 _aBayesian analysis of stochastic process models /
_cFabrizio Ruggeri, Michael P. Wiper, David Rios Insua.
260 _aHoboken, New Jersey :
_bWiley,
_c2012.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
520 _a"This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introduction of MCMC and other statistical computing machinery that have pushed forward advances in Bayesian methodology. Addressing the growing interest for Bayesian analysis of more complex models, based on stochastic processes, this book aims to unite scattered information into one comprehensive and reliable volume"--
_cProvided by publisher.
520 _a"A unique book on Bayesian analyses of stochastic process based models"--
_cProvided by publisher.
504 _aIncludes bibliographical references and index.
500 _aMachine generated contents note: Preface 1 Stochastic Processes 11 1.1 Introduction 11 1.2 Key Concepts in Stochastic Processes 11 1.3 Main Classes of Stochastic Processes 16 1.4 Inference, Prediction and Decision Making 21 1.5 Discussion 23 2 Bayesian Analysis 27 2.1 Introduction 27 2.2 Bayesian Statistics 28 2.3 Bayesian Decision Analysis 37 2.4 Bayesian Computation 39 2.5 Discussion 51 3 Discrete Time Markov Chains 61 3.1 Introduction 61 3.2 Important Markov Chain Models 62 3.3 Inference for First Order Chains 66 3.4 Special Topics 76 3.5 Case Study: Wind Directions at Gij́on 87 3.6 Markov Decision Processes 94 3.7 Discussion 97 4 Continuous Time Markov Chains and Extensions 105 4.1 Introduction 105 4.2 Basic Setup and Results 106 4.3 Inference and Prediction for CTMCs 108 4.4 Case Study: Hardware Availability through CTMCs 112 4.5 Semi-Markovian Processes 118 4.6 Decision Making with Semi-Markovian Decision Processes 122 4.7 Discussion 128 5 Poisson Processes and Extensions 133 5.1 Introduction 133 5.2 Basics on Poisson Processes 134 5.3 Homogeneous Poisson Processes 138 5.4 Nonhomogeneous Poisson Processes 147 5.5 Compound Poisson Processes 153 5.6 Further Extensions of Poisson Processes 154 5.7 Case Study: Earthquake Occurrences 157 5.8 Discussion 162 6 Continuous Time Continuous Space Processes 169 6.1 Introduction 169 6.2 Gaussian Processes 170 6.3 Brownian Motion and Fractional Brownian Motion 174 6.4 Dilusions 181 6.5 Case Study: Prey-predator Systems 184 6.6 Discussion 190 7 Queueing Analysis 201 7.1 Introduction 201 7.2 Basic Queueing Concepts 201 7.3 The Main Queueing Models 204 7.4 Inference for Queueing Systems 208 7.5 Inference for M=M=1 Systems 209 7.6 Inference for Non Markovian Systems 220 7.7 Decision Problems in Queueing Systems 229 7.8 Case Study: Optimal Number of Beds in a Hospital 230 7.9 Discussion 235 8 Reliability 245 8.1 Introduction 245 8.2 Basic Reliability Concepts 246 8.3 Renewal Processes 249 8.4 Poisson Processes 251 8.5 Other Processes 259 8.6 Maintenance 262 8.7 Case Study: Gas Escapes 263 8.8 Discussion 271 9 Discrete Event Simulation 279 9.1 Introduction 279 9.2 Discrete Event Simulation Methods 280 9.3 A Bayesian View of DES 283 9.4 Case Study: A G=G=1 Queueing System 286 9.5 Bayesian Output Analysis 288 9.6 Simulation and Optimization 292 9.7 Discussion 294 10 Risk Analysis 301 10.1 Introduction 301 10.2 Risk Measures 302 10.3 Ruin Problems 316 10.4 Case Study: Ruin Probability Estimation 320 10.5 Discussion 327 Appendix A Main Distributions 337 Appendix B Generating Functions and the Laplace-Stieltjes Transform 347 Index.
588 0 _aPrint version record and CIP data provided by publisher.
505 0 _aFront Matter -- Basic Concepts and Tools. Stochastic Processes -- Bayesian Analysis -- Models. Discrete Time Markov Chains and Extensions -- Continuous Time Markov Chains and Extensions -- Poisson Processes and Extensions -- Continuous Time Continuous Space Processes -- Applications. Queueing Analysis -- Reliability -- Discrete Event Simulation -- Risk Analysis -- Appendix A: Main Distributions -- Appendix B: Generating Functions and the Laplace₆Stieltjes Transform -- Index -- Wiley Series in Probability and Statistics.
650 0 _aBayesian statistical decision theory.
650 0 _aStochastic processes.
650 7 _aMATHEMATICS
_xProbability & Statistics
_xBayesian Analysis.
_2bisacsh
650 7 _aBayesian statistical decision theory.
_2fast
_0(OCoLC)fst00829019
650 7 _aStochastic processes.
_2fast
_0(OCoLC)fst01133519
655 4 _aElectronic books.
700 1 _aWiper, Michael P.
700 1 _aRíos Insua, David,
_d1964-
776 0 8 _iPrint version:
_aRuggeri, Fabrizio.
_tBayesian analysis of stochastic process models.
_dHoboken, New Jersey : Wiley, 2012
_z9780470744536
_w(DLC) 2012000092
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9780470975916
_zWiley Online Library
938 _aEBSCOhost
_bEBSC
_n443018
994 _a92
_bDG1
999 _c11572
_d11572