000 10821cam a2200961Ia 4500
001 ocn716215543
003 OCoLC
005 20171224113632.0
006 m o d
007 cr cn|||||||||
008 110428s2011 enka ob 001 0 eng d
040 _aUIU
_beng
_epn
_cUIU
_dYDXCP
_dDG1
_dOCLCQ
_dCOO
_dB24X7
_dE7B
_dCDX
_dOCLCQ
_dREDDC
_dOCLCQ
_dEBLCP
_dDEBSZ
_dOCLCO
_dOCLCQ
_dN$T
_dOCLCF
_dOCLCQ
_dIDEBK
_dDEBBG
_dOCLCQ
_dS3O
_dOCLCQ
_dAZK
019 _a711780360
_a765144014
_a769189252
_a769849270
_a771999468
_a772397870
_a816879070
_a961503244
_a961597673
_a962613432
_a962729284
020 _a9780470979174
_q(electronic bk.)
020 _a0470979178
_q(electronic bk.)
020 _a9780470979167
_q(electronic bk.)
020 _a047097916X
_q(electronic bk.)
020 _a1283373971
020 _a9781283373975
020 _z9780470979280
020 _z0470979283
020 _z9780470688298
_q(hardback)
020 _z0470688297
024 8 _a9786613373977
029 1 _aAU@
_b000051576698
029 1 _aCHNEW
_b000720557
029 1 _aDEBBG
_bBV041908537
029 1 _aDEBSZ
_b372823890
029 1 _aDEBSZ
_b397155158
029 1 _aDEBSZ
_b431052387
029 1 _aDEBSZ
_b449264181
029 1 _aDKDLA
_b820120-katalog:000556369
029 1 _aHEBIS
_b299832619
029 1 _aNZ1
_b13876188
029 1 _aNZ1
_b14257160
029 1 _aNZ1
_b15290871
029 1 _aDEBBG
_bBV043393085
035 _a(OCoLC)716215543
_z(OCoLC)711780360
_z(OCoLC)765144014
_z(OCoLC)769189252
_z(OCoLC)769849270
_z(OCoLC)771999468
_z(OCoLC)772397870
_z(OCoLC)816879070
_z(OCoLC)961503244
_z(OCoLC)961597673
_z(OCoLC)962613432
_z(OCoLC)962729284
037 _a10.1002/9780470979174
_bWiley InterScience
_nhttp://www3.interscience.wiley.com
041 1 _aeng
_hfre
050 4 _aQA76.9.D343
_bT84 2011
072 7 _aCOM
_x021030
_2bisacsh
072 7 _aPBT
_2bicssc
082 0 4 _a006.3/12
_222
049 _aMAIN
100 1 _aTuffery, Stephane.
245 1 0 _aData mining and statistics for decision making /
_cStephane Tuffery.
260 _aChichester, West Sussex ;
_aHoboken, NJ. :
_bWiley,
_c2011.
300 _a1 online resource (xxiv, 689 pages) :
_billustrations.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _adata file
_2rda
380 _aBibliography
490 1 _aWiley series in computational statistics
505 0 _aFront Matter -- Overview of Data Mining -- The Development of a Data Mining Study -- Data Exploration and Preparation -- Using Commercial Data -- Statistical and Data Mining Software -- An Outline of Data Mining Methods -- Factor Analysis -- Neural Networks -- Cluster Analysis -- Association Analysis -- Classification and Prediction Methods -- An Application of Data Mining: Scoring -- Factors for Success in a Data Mining Project -- Text Mining -- Web Mining -- Appendix A: Elements of Statistics -- Appendix B: Further Reading -- Index.
520 _a"This practical guide to understanding and implementing data mining techniques discusses traditional methods--cluster analysis, factor analysis, linear regression, PLS regression, and generalized linear models--and recent methods--bagging and boosting, decision trees, neural networks, support vector machines, and genetic algorithm. The book focuses largely on credit scoring, one of the most common applications of predictive techniques, but also includes other descriptive techniques, such as customer segmentation. It also covers data mining with R, provides a comparison of SAS and SPSS, and includes an appendix presenting the necessary statistical background"--
_cProvided by publisher.
520 _a"Data Mining is a practical guide to understanding and implementing data mining techniques, featuring traditional methods such as cluster analysis, factor analysis, linear regression, PLS regression and generalised linear models"--
_cProvided by publisher.
504 _aIncludes bibliographical references and index.
505 8 _aMachine generated contents note: Preface -- Foreword -- Contents -- Overview of data mining -- 1.1. What is data mining? -- 1.2. What is data mining used for? -- 1.3. Data Mining and statistics -- 1.4. Data mining and information technology -- 1.5. Data mining and protection of personal data -- 1.6. Implementation of data mining -- The development of a data mining study -- 2.1. Defining the aims -- 2.2. Listing the existing data -- 2.3. Collecting the data -- 2.4. Exploring and preparing the data -- 2.5. Population segmentation -- 2.6. Drawing up and validating predictive models -- 2.7. Synthesizing predictive models of different segments -- 2.8. Iteration of the preceding steps -- 2.9. Deploying the models -- 2.10. Training the model users -- 2.11. Monitoring the models -- 2.12. Enriching the models -- 2.13. Remarks -- 2.14. Life cycle of a model -- 2.15. Costs of a pilot project -- Data exploration and preparation -- 3.1. The different types of data -- 3.2. Examining the distribution of variables -- 3.3. Detection of rare or missing values -- 3.4. Detection of aberrant values -- 3.5. Detection of extreme values -- 3.6. Tests of normality -- 3.7. Homoscedasticity and heteroscedasticity -- 3.8. Detection of the most discriminating variables -- 3.9. Transformation of variables -- 3.10. Choosing ranges of values of continuous variables -- 3.11. Creating new variables -- 3.12. Detecting interactions 89 -- 3.13. Automatic variable selection -- 3.14. Detection of collinearity -- 3.15. Sampling -- Using commercial data -- 4.1. Data used in commercial applications -- 4.2. Special data -- 4.3. Data used by business sector -- Statistical and data mining software -- 5.1. Types of data mining and statistical software -- 5.2. Essential characteristics of the software -- 5.3. The main software packages -- 5.4. Comparison of R, SAS and IBM SPSS -- 5.5. How to reduce processing time -- An outline of data mining methods -- 6.1. A note on terminology -- 6.2. Classification of the methods -- 6.3. Comparison of the methods -- 6.4. Using these methods in the business world -- Factor analysis -- 7.1. Principal component analysis -- 7.2. Variants of principal component analysis -- 7.3. Correspondence analysis -- 7.4. Multiple correspondence analysis -- Neural networks -- 8.1. General information on neural networks -- 8.2. Structure of a neural network -- 8.3. Choosing the training sample -- 8.4. Some empirical rules for network design -- 8.5. Data normalization -- 8.6. Learning algorithms -- 8.7. The main neural networks -- Automatic clustering methods -- 9.1. Definition of clustering -- 9.2. Applications of clustering -- 9.3. Complexity of clustering -- 9.4. Clustering structures -- 9.5. Some methodological considerations -- 9.6. Comparison of factor analysis and clustering -- 9.7. Intra-class and inter-class inertias -- 9.8. Measurements of clustering quality -- 9.9. Partitioning methods -- 9.10. Hierarchical ascending clustering -- 9.11. Hybrid clustering methods -- 9.12. Neural clustering -- 9.13. Clustering by aggregation of similarities -- 9.14. Clustering of numeric variables -- 9.15. Overview of clustering methods -- Finding associations -- 10.1. Principles -- 10.2. Using taxonomy -- 10.3. Using supplementary variables -- 10.4. Applications -- 10.5. Example of use -- Classification and prediction methods -- 11.1. Introduction -- 11.2. Inductive and transductive methods -- 11.3. Overview of classification and prediction methods -- 11.4. Classification by decision tree -- 11.5. Prediction by decision tree -- 11.6. Classification by discriminant analysis -- 11.7. Prediction by linear regression -- 11.8. Classification by logistic regression -- 11.9. Developments in logistic regression -- 11.10. Bayesian methods -- 11.11. Classification and prediction by neural networks -- 11.12. Classification by support vector machines (SVMs) -- 11.13. Prediction by genetic algorithms -- 11.14. Improving the performance of a predictive model -- 11.15. Bootstrapping and aggregation of models -- 11.16. Using classification and prediction methods -- An application of data mining: scoring -- 12.1. The different types of score -- 12.2. Using propensity scores and risk scores -- 12.3. Methodology -- 12.4. Implementing a strategic score -- 12.5. Implementing an operational score -- 12.6. The kinds of scoring solutions used in a business -- 12.7. An example of credit scoring (data preparation) -- 12.8. An example of credit scoring (modelling by logistic regression) -- 12.9. An example of credit scoring (modelling by DISQUAL discriminant analysis) -- 12.10. A brief history of credit scoring -- Factors for success in a data mining project -- 13.1. The subject -- 13.2. The people -- 13.3. The data -- 13.4. The IT systems -- 13.5. The business culture -- 13.6. Data mining: eight common misconceptions -- 13.7. Return on investment -- Text mining -- 14.1. Definition of text mining -- 14.2. Text sources used -- 14.3. Using text mining -- 14.4. Information retrieval -- 14.5. Information extraction -- 14.6. Multi-type data mining -- Web mining -- 15.1. The aims of web mining -- 15.2. Global analyses -- 15.3. Individual analyses -- 15.4. Personal analyses -- Appendix: Elements of statistics -- 16.1. A brief history -- 16.2. Elements of statistics -- 16.3. Statistical tables -- Further reading -- 17.1. Statistics and data analysis -- 17.2. Data mining and statistical learning -- 17.3. Text mining -- 17.4. Web mining -- 17.5. R software -- 17.6. SAS software -- 17.7. IBM SPSS software -- 17.8. Websites -- Index.
588 0 _aPrint version record.
650 0 _aData mining.
650 0 _aStatistical decision.
650 4 _aData mining.
650 4 _aStatistical decision.
650 7 _aCOMPUTERS
_xDatabase Management
_xData Mining.
_2bisacsh
650 7 _aData mining.
_2fast
_0(OCoLC)fst00887946
650 7 _aStatistical decision.
_2fast
_0(OCoLC)fst01132059
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aTuffery, Stephane.
_tData mining and statistics for decision making.
_dChichester, West Sussex ; Hoboken, NJ. : Wiley, 2011
_z9780470688298
_w(DLC) 2010039789
_w(OCoLC)669160723
830 0 _aWiley series in computational statistics.
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9780470979174
_zWiley Online Library
938 _aBooks 24x7
_bB247
_nbkb00040918
938 _aCoutts Information Services
_bCOUT
_n20433834
938 _aEBL - Ebook Library
_bEBLB
_nEBL792450
938 _aebrary
_bEBRY
_nebr10510552
938 _aEBSCOhost
_bEBSC
_n509459
938 _aIngram Digital eBook Collection
_bIDEB
_n337397
938 _aYBP Library Services
_bYANK
_n3588066
938 _aYBP Library Services
_bYANK
_n3650561
938 _aYBP Library Services
_bYANK
_n12668239
994 _a92
_bDG1
999 _c11064
_d11064