Khulna University of Engineering & Technology
Central Library

Normal view MARC view ISBD view

Wavelength division multiplexing : a practical engineering guide / Klaus Grobe, Michael Eiselt.

By: Grobe, Klaus.
Contributor(s): Eiselt, Michael (Telecommunications engineer).
Material type: materialTypeLabelBookSeries: Wiley series in pure and applied optics: Publisher: Hoboken, New Jersey : Wiley, 2013Edition: 1st edition.Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781118755150; 1118755154; 9781118755037; 1118755030; 9781118755112; 1118755111; 9781118755068; 1118755065; 0470623020; 9780470623022.Subject(s): Wavelength division multiplexing | Science -- Wave mechanics | Science -- Waves | Wavelength division multiplexing | SCIENCE -- Waves & Wave Mechanics | Wavelength division multiplexingGenre/Form: Electronic books.Additional physical formats: Print version:: Wavelength division multiplexing.DDC classification: 621.382/16 Other classification: SCI067000 Online resources: Wiley Online Library
Contents:
Wavelength Division Multiplexing: A Practical Engineering Guide; Contents; Acknowledgments; 1 Introduction to WDM; 1.1 WDM Theory; 1.2 History of WDM; References; 2 Optical Fiber Effects; 2.1 Linear Effects; 2.1.1 Attenuation; 2.1.1.1 Intrinsic Loss; 2.1.1.2 Fiber Bending Loss; 2.1.1.3 Polarization-Dependent Loss; 2.1.2 Chromatic Dispersion; 2.1.3 Polarization-Mode Dispersion; 2.1.3.1 PMD and DGD; 2.1.3.2 PMD in Recirculating Loops; 2.1.3.3 Real-World Fiber Plant PMD Audits; 2.2 Nonlinear Fiber Effects; 2.2.1 Kerr Effects; 2.2.1.1 Self-Phase Modulation; 2.2.1.2 Cross-Phase Modulation.
2.2.1.3 Cross-Polarization Modulation2.2.1.4 Four-Wave Mixing; 2.2.1.5 Modulation Instability; 2.2.1.6 Nonlinear Phase Noise; 2.2.2 Scattering Effects; 2.2.2.1 Stimulated Raman Scattering; 2.2.2.2 Brillouin Scattering; References; 3 Components and Subsystems; 3.1 Transmitters; 3.1.1 Laser Diodes; 3.1.1.1 Principle of Diode Lasers; 3.1.1.2 Fabry-P erot Laser Diodes; 3.1.1.3 Distributed Feedback and Distributed Bragg Reflector Laser Diodes; 3.1.1.4 Vertical-Cavity Surface-Emitting Lasers; 3.1.1.5 Tunable Laser Diodes; 3.1.2 External Modulators; 3.1.2.1 Electroabsorption Modulators.
3.1.2.2 Electro-Optic Modulators3.1.2.3 Reflective Semiconductor Optical Amplifiers; 3.1.3 Direct-Modulation Techniques; 3.1.3.1 Directly Modulated Laser; 3.1.3.2 Dispersion-Supported Transmission; 3.1.3.3 Chirp-Managed Laser; 3.2 Transmission Line; 3.2.1 Single-Mode Fiber Types; 3.2.2 Novel and Specialty Fibers; 3.2.2.1 Few-Mode Fibers; 3.2.2.2 Multicore Fibers; 3.2.2.3 Polymer Optical Fibers; 3.2.2.4 PCF and PBG Fibers; 3.2.3 Fiber-Optic Cables; 3.2.4 Optical Amplifiers; 3.2.4.1 EDFAs and Other Rare-Earth-Doped Fiber Amplifiers; 3.2.4.2 Raman Amplifiers.
3.2.4.3 Semiconductor Optical Amplifiers3.2.5 Dispersion Compensation; 3.2.5.1 Dispersion-Compensating Fibers; 3.2.5.2 Chirped Fiber Gratings; 3.2.5.3 Self-Phase Modulation (Soliton Effect); 3.2.5.4 TODC; 3.2.6 Passive WDM Filters and Couplers; 3.2.6.1 Fused Couplers; 3.2.6.2 Thin-Film Filters; 3.2.6.3 Arrayed Waveguide Gratings; 3.2.6.4 Fiber Bragg Gratings; 3.2.6.5 Interleavers (Mach-Zehnder Interferometer); 3.2.6.6 Tunable Filters; 3.2.6.7 Wavelength Switching Devices; 3.2.7 ROADMs and OXCs; 3.2.7.1 ROADM Structures; 3.2.7.2 Multidegree WSS; 3.2.7.3 Optical Cross-Connects; 3.3 Receivers.
3.3.1 Photodiodes3.3.1.1 PIN Photodiodes; 3.3.1.2 Avalanche Photodiodes; 3.3.2 Electronic Amplifiers; 3.3.2.1 TIA; 3.3.2.2 Limiting Amplifier; 3.3.3 Pluggable Transceivers for WDM; 3.4 Digital Electronics; 3.4.1 SERDES; 3.4.1.1 Serializer; 3.4.1.2 Deserializer; 3.4.2 Forward Error Correction; 3.4.2.1 FEC Basics; 3.4.2.2 Cyclic Codes; 3.4.2.3 Code Concatenation and Iterative Decoding; 3.4.3 Electronic Distortion Compensation; References; 4 Nonfiber-Related Effects; 4.1 Linear Cross Talk; 4.2 Noise in Optical Transmission Systems; 4.2.1 Noise in Optical Receivers; 4.2.2 Receiver Sensitivities.
Summary: "In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rates is given as well. Key features: Considers WDM from ULH backbone (big picture view) down to PON access (micro view). Includes all major telecom and datacom applications. Provides the relevant background for state-of-the-art and next-gen systems. Offers practical guidelines for system / link engineering."-- Provided by publisher.Summary: "In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Includes index.

"In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rates is given as well. Key features: Considers WDM from ULH backbone (big picture view) down to PON access (micro view). Includes all major telecom and datacom applications. Provides the relevant background for state-of-the-art and next-gen systems. Offers practical guidelines for system / link engineering."-- Provided by publisher.

"In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view"-- Provided by publisher.

Print version record and CIP data provided by publisher.

Includes bibliographical references and index.

Wavelength Division Multiplexing: A Practical Engineering Guide; Contents; Acknowledgments; 1 Introduction to WDM; 1.1 WDM Theory; 1.2 History of WDM; References; 2 Optical Fiber Effects; 2.1 Linear Effects; 2.1.1 Attenuation; 2.1.1.1 Intrinsic Loss; 2.1.1.2 Fiber Bending Loss; 2.1.1.3 Polarization-Dependent Loss; 2.1.2 Chromatic Dispersion; 2.1.3 Polarization-Mode Dispersion; 2.1.3.1 PMD and DGD; 2.1.3.2 PMD in Recirculating Loops; 2.1.3.3 Real-World Fiber Plant PMD Audits; 2.2 Nonlinear Fiber Effects; 2.2.1 Kerr Effects; 2.2.1.1 Self-Phase Modulation; 2.2.1.2 Cross-Phase Modulation.

2.2.1.3 Cross-Polarization Modulation2.2.1.4 Four-Wave Mixing; 2.2.1.5 Modulation Instability; 2.2.1.6 Nonlinear Phase Noise; 2.2.2 Scattering Effects; 2.2.2.1 Stimulated Raman Scattering; 2.2.2.2 Brillouin Scattering; References; 3 Components and Subsystems; 3.1 Transmitters; 3.1.1 Laser Diodes; 3.1.1.1 Principle of Diode Lasers; 3.1.1.2 Fabry-P erot Laser Diodes; 3.1.1.3 Distributed Feedback and Distributed Bragg Reflector Laser Diodes; 3.1.1.4 Vertical-Cavity Surface-Emitting Lasers; 3.1.1.5 Tunable Laser Diodes; 3.1.2 External Modulators; 3.1.2.1 Electroabsorption Modulators.

3.1.2.2 Electro-Optic Modulators3.1.2.3 Reflective Semiconductor Optical Amplifiers; 3.1.3 Direct-Modulation Techniques; 3.1.3.1 Directly Modulated Laser; 3.1.3.2 Dispersion-Supported Transmission; 3.1.3.3 Chirp-Managed Laser; 3.2 Transmission Line; 3.2.1 Single-Mode Fiber Types; 3.2.2 Novel and Specialty Fibers; 3.2.2.1 Few-Mode Fibers; 3.2.2.2 Multicore Fibers; 3.2.2.3 Polymer Optical Fibers; 3.2.2.4 PCF and PBG Fibers; 3.2.3 Fiber-Optic Cables; 3.2.4 Optical Amplifiers; 3.2.4.1 EDFAs and Other Rare-Earth-Doped Fiber Amplifiers; 3.2.4.2 Raman Amplifiers.

3.2.4.3 Semiconductor Optical Amplifiers3.2.5 Dispersion Compensation; 3.2.5.1 Dispersion-Compensating Fibers; 3.2.5.2 Chirped Fiber Gratings; 3.2.5.3 Self-Phase Modulation (Soliton Effect); 3.2.5.4 TODC; 3.2.6 Passive WDM Filters and Couplers; 3.2.6.1 Fused Couplers; 3.2.6.2 Thin-Film Filters; 3.2.6.3 Arrayed Waveguide Gratings; 3.2.6.4 Fiber Bragg Gratings; 3.2.6.5 Interleavers (Mach-Zehnder Interferometer); 3.2.6.6 Tunable Filters; 3.2.6.7 Wavelength Switching Devices; 3.2.7 ROADMs and OXCs; 3.2.7.1 ROADM Structures; 3.2.7.2 Multidegree WSS; 3.2.7.3 Optical Cross-Connects; 3.3 Receivers.

3.3.1 Photodiodes3.3.1.1 PIN Photodiodes; 3.3.1.2 Avalanche Photodiodes; 3.3.2 Electronic Amplifiers; 3.3.2.1 TIA; 3.3.2.2 Limiting Amplifier; 3.3.3 Pluggable Transceivers for WDM; 3.4 Digital Electronics; 3.4.1 SERDES; 3.4.1.1 Serializer; 3.4.1.2 Deserializer; 3.4.2 Forward Error Correction; 3.4.2.1 FEC Basics; 3.4.2.2 Cyclic Codes; 3.4.2.3 Code Concatenation and Iterative Decoding; 3.4.3 Electronic Distortion Compensation; References; 4 Nonfiber-Related Effects; 4.1 Linear Cross Talk; 4.2 Noise in Optical Transmission Systems; 4.2.1 Noise in Optical Receivers; 4.2.2 Receiver Sensitivities.

There are no comments for this item.

Log in to your account to post a comment.


Khulna University of Engineering & Technology
Funded by: HEQEP, UGC, Bangladesh