Khulna University of Engineering & Technology
Central Library

Normal view MARC view ISBD view

Bayesian analysis of stochastic process models / Fabrizio Ruggeri, Michael P. Wiper, David Rios Insua.

By: Ruggeri, Fabrizio.
Contributor(s): Wiper, Michael P | Ríos Insua, David, 1964-.
Material type: materialTypeLabelBookPublisher: Hoboken, New Jersey : Wiley, 2012Description: 1 online resource.Content type: text Media type: unmediated Carrier type: volumeISBN: 9780470975923; 047097592X; 9781118304037; 1118304039; 9781118304204; 1118304209; 9780470975916; 0470975911.Subject(s): Bayesian statistical decision theory | Stochastic processes | MATHEMATICS -- Probability & Statistics -- Bayesian Analysis | Bayesian statistical decision theory | Stochastic processesGenre/Form: Electronic books.Additional physical formats: Print version:: Bayesian analysis of stochastic process models.DDC classification: 519.5/42 Other classification: MAT029010 Online resources: Wiley Online Library
Contents:
Front Matter -- Basic Concepts and Tools. Stochastic Processes -- Bayesian Analysis -- Models. Discrete Time Markov Chains and Extensions -- Continuous Time Markov Chains and Extensions -- Poisson Processes and Extensions -- Continuous Time Continuous Space Processes -- Applications. Queueing Analysis -- Reliability -- Discrete Event Simulation -- Risk Analysis -- Appendix A: Main Distributions -- Appendix B: Generating Functions and the Laplace₆Stieltjes Transform -- Index -- Wiley Series in Probability and Statistics.
Summary: "This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introduction of MCMC and other statistical computing machinery that have pushed forward advances in Bayesian methodology. Addressing the growing interest for Bayesian analysis of more complex models, based on stochastic processes, this book aims to unite scattered information into one comprehensive and reliable volume"-- Provided by publisher.Summary: "A unique book on Bayesian analyses of stochastic process based models"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

"This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introduction of MCMC and other statistical computing machinery that have pushed forward advances in Bayesian methodology. Addressing the growing interest for Bayesian analysis of more complex models, based on stochastic processes, this book aims to unite scattered information into one comprehensive and reliable volume"-- Provided by publisher.

"A unique book on Bayesian analyses of stochastic process based models"-- Provided by publisher.

Includes bibliographical references and index.

Machine generated contents note: Preface 1 Stochastic Processes 11 1.1 Introduction 11 1.2 Key Concepts in Stochastic Processes 11 1.3 Main Classes of Stochastic Processes 16 1.4 Inference, Prediction and Decision Making 21 1.5 Discussion 23 2 Bayesian Analysis 27 2.1 Introduction 27 2.2 Bayesian Statistics 28 2.3 Bayesian Decision Analysis 37 2.4 Bayesian Computation 39 2.5 Discussion 51 3 Discrete Time Markov Chains 61 3.1 Introduction 61 3.2 Important Markov Chain Models 62 3.3 Inference for First Order Chains 66 3.4 Special Topics 76 3.5 Case Study: Wind Directions at Gij́on 87 3.6 Markov Decision Processes 94 3.7 Discussion 97 4 Continuous Time Markov Chains and Extensions 105 4.1 Introduction 105 4.2 Basic Setup and Results 106 4.3 Inference and Prediction for CTMCs 108 4.4 Case Study: Hardware Availability through CTMCs 112 4.5 Semi-Markovian Processes 118 4.6 Decision Making with Semi-Markovian Decision Processes 122 4.7 Discussion 128 5 Poisson Processes and Extensions 133 5.1 Introduction 133 5.2 Basics on Poisson Processes 134 5.3 Homogeneous Poisson Processes 138 5.4 Nonhomogeneous Poisson Processes 147 5.5 Compound Poisson Processes 153 5.6 Further Extensions of Poisson Processes 154 5.7 Case Study: Earthquake Occurrences 157 5.8 Discussion 162 6 Continuous Time Continuous Space Processes 169 6.1 Introduction 169 6.2 Gaussian Processes 170 6.3 Brownian Motion and Fractional Brownian Motion 174 6.4 Dilusions 181 6.5 Case Study: Prey-predator Systems 184 6.6 Discussion 190 7 Queueing Analysis 201 7.1 Introduction 201 7.2 Basic Queueing Concepts 201 7.3 The Main Queueing Models 204 7.4 Inference for Queueing Systems 208 7.5 Inference for M=M=1 Systems 209 7.6 Inference for Non Markovian Systems 220 7.7 Decision Problems in Queueing Systems 229 7.8 Case Study: Optimal Number of Beds in a Hospital 230 7.9 Discussion 235 8 Reliability 245 8.1 Introduction 245 8.2 Basic Reliability Concepts 246 8.3 Renewal Processes 249 8.4 Poisson Processes 251 8.5 Other Processes 259 8.6 Maintenance 262 8.7 Case Study: Gas Escapes 263 8.8 Discussion 271 9 Discrete Event Simulation 279 9.1 Introduction 279 9.2 Discrete Event Simulation Methods 280 9.3 A Bayesian View of DES 283 9.4 Case Study: A G=G=1 Queueing System 286 9.5 Bayesian Output Analysis 288 9.6 Simulation and Optimization 292 9.7 Discussion 294 10 Risk Analysis 301 10.1 Introduction 301 10.2 Risk Measures 302 10.3 Ruin Problems 316 10.4 Case Study: Ruin Probability Estimation 320 10.5 Discussion 327 Appendix A Main Distributions 337 Appendix B Generating Functions and the Laplace-Stieltjes Transform 347 Index.

Print version record and CIP data provided by publisher.

Front Matter -- Basic Concepts and Tools. Stochastic Processes -- Bayesian Analysis -- Models. Discrete Time Markov Chains and Extensions -- Continuous Time Markov Chains and Extensions -- Poisson Processes and Extensions -- Continuous Time Continuous Space Processes -- Applications. Queueing Analysis -- Reliability -- Discrete Event Simulation -- Risk Analysis -- Appendix A: Main Distributions -- Appendix B: Generating Functions and the Laplace₆Stieltjes Transform -- Index -- Wiley Series in Probability and Statistics.

There are no comments for this item.

Log in to your account to post a comment.


Khulna University of Engineering & Technology
Funded by: HEQEP, UGC, Bangladesh